Data Structures
Last edited: January 6, 2025 - 4 minutes read
Description
Data Structures in Java.
Content
Overview of the most useful data structures from the Java Collections API
Note: In order to make any of the following collections thread safe, you can use:
List<E> list = Collection.synchronizedList(list);
Set<E> set = Collection.synchronizedSet(set);
Map<K, V> map = Collection.synchronizedMap(map);
Arrays
Array
E[] array = new E[10];
int n = array.length;
E element = array[0];
array[0] = element;
Arrays.sort(array);
Arrays.sort(array, Collections.reverseOrder());
Arrays.sort(array, (E e1, E e2) -> e1.compareTo(e2));
int index = Arrays.binarySearch(array, element);
Running times:
Operation | Time Complexity |
---|---|
Access | O(1) |
Update | O(1) |
Iteration | O(n) |
Lists
ArrayList
ArrayList<E> list = new ArrayList<>();
int n = list.size();
list.add(element);
list.add(index, element);
list.addAll(collection);
list.addAll(index, collection);
E element = list.get(index);
E removed = list.remove(index);
list.clear();
boolean isEmpty = list.isEmpty();
boolean contains = list.contains(element);
int index = list.indexOf(element);
int min = Collections.min(list)
int max = Collections.max(list)
int count = Collections.frequency(list, element);
Collections.sort(list);
Collections.sort(list, Collections.reverseOrder());
Collections.sort(list, (E e1, E e2) -> e1.compareTo(e2));
int index = Collections.binarySearch(list, element);
Collections.shuffle(list);
Running times:
Operation | Time Complexity |
---|---|
Get | O(1) |
IndexOf | O(n) |
Add | O(1) |
Remove | O(n) |
Iteration | O(n) |
Stacks
ArrayDeque
ArrayDeque<E> stack = new ArrayDeque<>();
stack.push(element);
E top = stack.peek();
E popped = stack.pop();
boolean isEmpty = stack.isEmpty();
int size = stack.size();
Running times:
Operation | Time Complexity |
---|---|
Push | O(1) |
Peek | O(1) |
Pop | O(1) |
Queues
ArrayDeque
ArrayDeque<E> queue = new ArrayDeque<>();
queue.offer(element);
E head = queue.peek();
E removed = queue.poll();
boolean isEmpty = queue.isEmpty();
int size = queue.size();
Running times:
Operation | Time Complexity |
---|---|
Offer | O(1) |
Peek | O(1) |
Poll | O(1) |
PriorityQueue (Heap Implementation)
PriorityQueue<E> priorityQueue = new PriorityQueue<>();
PriorityQueue<E> priorityQueue = new PriorityQueue<>(Collections.reverseOrder());
PriorityQueue<E> priorityQueue = new PriorityQueue<>((E e1, E e2) -> e1.compareTo(e2));
int size = priorityQueue.size();
priorityQueue.offer(element);
E head = priorityQueue.peek();
E removed = priorityQueue.poll();
boolean isEmpty = priorityQueue.isEmpty();
boolean contains = priorityQueue.contains(element);
Running times:
Operation | Time Complexity |
---|---|
Offer | O(log n) |
Peek | O(1) |
Poll | O(log n) |
Sets
HashSet
HashSet<E> set = new HashSet<>();
int n = set.size();
set.add(element);
set.remove(element);
set.clear();
boolean isEmpty = set.isEmpty();
boolean contains = set.contains(element);
Running times:
Operation | Time Complexity |
---|---|
Add | O(1) (degrades to O(n) with hash collisions) |
Remove | O(1) (degrades to O(n) with hash collisions) |
Contains | O(1) (degrades to O(n) with hash collisions) |
Iteration | O(n) |
TreeSet
TreeSet<E> set = new TreeSet<>();
TreeSet<E> set = new TreeSet<>(Collections.reverseOrder());
TreeSet<E> set = new TreeSet<>((E e1, E e2) -> e1.compareTo(e2));
int n = set.size();
set.add(element);
E first = set.first();
E last = set.last();
E before = set.lower(element);
E after = set.higher(element);
set.remove(element);
set.clear();
SortedSet<E> sub = set.subSet(fromElement, fromInclusive, toElement, toInclusive);
SortedSet<E> tail = set.tailSet(fromElement, inclusive);
SortedSet<E> head = set.headSet(toElement, inclusive);
boolean isEmpty = set.isEmpty();
boolean contains = set.contains(element);
Running times:
Operation | Time Complexity |
---|---|
Add | O(log n) |
Remove | O(log n) |
Contains | O(log n) |
Iteration | O(n) |
LinkedHashSet
LinkedHashSet<E> set = new LinkedHashSet<>();
int n = set.size();
set.add(element);
set.remove(element);
set.clear();
boolean isEmpty = set.isEmpty();
boolean contains = set.contains(element);
// insertion order iteration
for (E e : set) {
}
Running times:
Operation | Time Complexity |
---|---|
Add | O(1) (degrades to O(n) with hash collisions) |
Remove | O(1) (degrades to O(n) with hash collisions) |
Contains | O(1) (degrades to O(n) with hash collisions) |
Iteration | O(n) |
Maps
HashMap
HashMap<K, V> map = new HashMap<>();
int n = map.size();
map.put(key, value);
V value = map.get(key);
map.remove(key);
map.clear();
boolean isEmpty = map.isEmpty();
boolean containsKey = map.containsKey(key);
boolean containsValue = map.containsValue(value);
Running times:
Operation | Time Complexity |
---|---|
Put | O(1) (degrades to O(n) with hash collisions) |
Get | O(1) (degrades to O(n) with hash collisions) |
Remove | O(1) (degrades to O(n) with hash collisions) |
ContainsKey | O(1) (degrades to O(n) with hash collisions) |
ContainsValue | O(n) |
Iteration | O(n) |
TreeMap
TreeMap<K, V> map = new TreeMap<>();
TreeMap<K, V> map = new TreeMap<>(Collections.reverseOrder());
TreeMap<K, V> map = new TreeMap<>((K k1, K k2) -> k1.compareTo(k2));
int n = map.size();
map.put(key, value);
V value = map.get(key);
K firstKey = map.firstKey();
K lastKey = map.lastKey();
K beforeKey = map.lowerKey(key);
K afterKey = map.higherKey(key);
map.remove(key);
map.clear();
NavigableMap<K, V> sub = map.subMap(fromKey, fromInclusive, toKey, toInclusive);
NavigableMap<K, V> tail = map.tailMap(fromKey, inclusive);
NavigableMap<K, V> head = map.headMap(toKey, inclusive);
boolean isEmpty = map.isEmpty();
boolean containsKey = map.containsKey(key);
boolean containsValue = map.containsValue(value);
Running times:
Operation | Time Complexity |
---|---|
Put | O(log n) |
Get | O(log n) |
Remove | O(log n) |
ContainsKey | O(log n) |
ContainsValue | O(n) |
Iteration | O(n) |
LinkedHashMap
LinkedHashMap<E> map = new LinkedHashMap<>();
LinkedHashMap<E> map = new LinkedHashMap<>(Collections.reverseOrder());
LinkedHashMap<E> map = new LinkedHashMap<>((E e1, E e2) -> e1.compareTo(e2));
int n = map.size();
map.add(element);
map.remove(element);
map.clear();
boolean isEmpty = map.isEmpty();
boolean contains = map.contains(element);
// insertion order iteration
for (Map.Entry<K, V> entry : map.entrySet()) {
K key = entry.getKey();
V value = entry.getValue();
}
Running times:
Operation | Time Complexity |
---|---|
Put | O(1) (degrades to O(n) with hash collisions) |
Get | O(1) (degrades to O(n) with hash collisions) |
Remove | O(1) (degrades to O(n) with hash collisions) |
ContainsKey | O(1) (degrades to O(n) with hash collisions) |
ContainsValue | O(n) |
Iteration | O(n) |